
Pergamon 
0021-8928(95)00022-4 

J. Appl. Maths Mechs, Vol. 59, No. 2, pp. 187-195, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021--8928/95 $24.00+0.00 

A METHOD OF FINDING ASYMPTOTIC FORMS AT THE 
COMMON APEX OF ELASTIC WEDGESt 

V. T. B L I N O V A  and  A. M. L I N ' K O V  

St Petersburg 

(Received 19 Ju~y 1993) 

An efficient method of determining the asymptotic behaviour of stresses and strains in the neighbourhood of the common apex 
of elastic wedges is proposed. Compared with other known approaches, this method has the merit of using matrices no higher 
than the second order, regardless of the number of wedges. This is done by exploiting the specific geometry of the problem: the 
wedges form a chain-type system. Then the use of Merlin transforms and utilization of the geomet~ reduces the problem to a 
system of three-point difference equations with matrices no higher than the second order. The determinant of the system is easily 
computed by the pivotal condensation method. Formulae are given for open and closed systems of elastic wedges, assuming 
complete bonding and sfippage at the contacts, for plane and anti-plane deformations. In the latter case the method includes 
asymptotic forms for problems described by Laplace's equation. 

Further advances in boundary element or finite element methods necessitate taking the corners of 
interacting wedges into account. Corners are points of intersection of cracks or of boundaries of plane 
regions with different properties. They may either belong to the outer boundary or be within the body. 
In the former ease (Fig. 1) one has a configuration of"open" type, in the latter (Fig. 2)---one of"closed" 
type. Sometimes corners are caused by artificial division of the region, in the coupling of boundary and 
finite elements. In three-dimensional block (granulated) systems there may be such points on the smooth 
parts of common edges. 

A geometric discontinuity, even when generated by a single wedge, requires special treatment if reliable 
numerical results are desired [1, 2]. Various approaches have been proposed to that end, some of them 
semi-empirical or "experimental" [2-5]. They are satisfactory for a single wedge (particularly at acute 
angles). However, the possibility of ensuring correct results in the general case, without resorting to 
actual asymptotic expansions [6], is highly problematical. 

Another, "regular" approach is to use actual asymptotic expansions in the neighbourhood of the 
corner. If the rigorous theoretical asymptotic forms are known, one can use them to construct special 
trial functions for the boundary or finite elements contiguous with the corner [7, 8]. 

This approach comprises two stages. In the first stage one finds rigorous asymptotic relations at 
the corner. In the second stage these asymptotic relations are substituted into the trial functions 
for the special, "singular", elements. A simple example of this kind is an end element, which allows for 
the root asymptotic forms in the neighbourhood of the tip of a crack [9]. It gives a marked increase 
in the accuracy of numerical results [9, 10]. 

We shall concentrate on the first stage. Our aim is to give an efficient algorithm for setting up a 
computer module. The latter should use as input data only the local geometry and properties of the 
wedges in the neighbourhood of the corner. The output should be the characteristics of the asymptotic 
forms. These output asymptotic forms, in turn, will serve as input information for modules to generate 
the trial functions and work with them. 

The classical way to obtain asymptotic forms for a wedge of arbitrary angle involves the use of the 
Mellin transform or, equivalently, some variant of the method of separation of variables [11-31]. 

Previous publications [11-25] have treated eases of at most three wedges. However, the general ease 
of three or more wedges proves to be more accessible if one has a solution for a single wedge. Indeed, 
for n wedges, it will suffice to use the MeUin transforms of the solutions for each wedge and couple 
them together using boundary and contact conditions. This natural approach may be implemented in 
different ways. 

The simplest approach is direct combination of the aforementioned solutions in a system [26, 27]. 
The characteristic determinant of the system is of order 4n. It has been written out explicitly for the 
special ease of three wedges (n = 3), when it is of order 12 [27]. 
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In order to avoid matrices and determinants of high orders, one can proceed differently. The idea 
is to exploit the specific geometry of the problem: these systems of wedges are chain-type systems. This 
makes it poss~le to employ three-point difference equations, which can be solved effectively by the 
pivotal condensation method [32]. The method developed below is based on this approach. 

Essentially, unlike previous work, we shall use the special form of the characteristic determinant (of 
order 4n). This form takes the special geometry of the problem into consideration. Its treatment by the 
Gauss elimination method reduces to the pivotal condensation method, and moreover the latter is 
required for matrices no higher than the second order. Due to the low order of these matrices, as well 
as the known stability and efficiency of the pivotal condensation method, the method proposed here is 
superior to previously used approaches. In particular, it is unconditionally more stable than matrix transfer 
[26] (the reasons for the latter's instability, as well as illustrative examples, may be found, e.g. in [32-34]). 

1. I N I T I A L  F O R M U L A E  

We will solve the problem of the asymptotic forms in the neighbourhood of the common comer of a 
composite wedge in polar coordinates (r, 0) with the origin at the common corner (Figs 1 and 2). To fix 
our ideas, we will number the wedges in order of increasing angular coordinate 0. (In the case of a closed 
system the polar axis is placed in an arbitrary wedge.) The angle of the ith wedge will be denoted by O/. 

The contacts will also be numbered, assigning the index i to the boundary between the ith and (i+ 1)th 
wedges. In an open system (Fig. 1) the contact-free (i.e. outer) boundary of the first wedge is assigned 
the index 0. In a closed system (Fig. 2) the zeroth and nth boundaries coincide. 

Quantifies referring to the ith wedge will be given the superscript i. The latter's contact with the ith 
wedge will be indicated by the superscript b, and that with the ( i+l) th  wedge by the subscript t. 

The Mellin transform and its inverse are 
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1 c+io* 
= ~  ~ f(s,O) r-sds (1.1) f ( s , 0 )=  0f(r '0)rS-ldr'  f(r,O) 2rgi c-i~ 

Throughout, the argument r is that of the function itself, while s labels the Mellin transform. For 
stresses, as usual [12], we shall use the Mellin transform of the stress multiplied by r 2, but displacements 
will be multiplied by r, so that, for example 

o0o(s,0) = Y r2Ooo(r,O)rS-ldr, uo(s,O) = ~ ruo(r,O)rS-ldr (1.2) 
0 0 

This convention will be used wherever we are dealing with a biharmonic problem. (In problems for 
Laplace's equation, in particular, in the problem of anti-plane deformation, stresses are multiplied by 
r, but deformations are considered without this factor.) 

We shall begin the construction of the system with the treatment of a single wedge. To simplify the 
notation, we shall not indicate its index, and we shall place the polar axis along the axis of symmetry 
of the wedge. Denote the angle of the wedge by O. Then, using Airy functions and Melon transforms, 
we obtain 

G o (s, O) = 6~ (s, O) + a~ (s, O) 

ui(s,O) = u: (s,O) + uT (s,O) 

(i, j = 0, r) 

(i = 0, r) 
(1.3) 

where the superscript s indicates the symmetric part (relative to the axis of symmetry), and the superscript 
a the anti-symmetric part; moreover 

6~0 (s,0) = A](s + 1)cos 0 + A~s(s + 1)cos(s + 2)0 

t~(s ,O) = -A~s(s + 1)sin 0 - A~(s + 1)(s + 2) sin(s + 2)0 

(ySrr (S, O) = -A~s(s + 1)cos 0 - A~ (s + 1)(s + 4)cos(s + 2)0 (1.4) 

s 1 ( +  4k]  
ug(s,O)=At ~ ssins0+m~ ( s + 2 ) -  ~ sin(s+2)0 

• (¼ 4' 3 uS(s,O)=A t - ~  scossO+A~ s + ~  cos(s+2)0 

while for the anti-symmetric part we make the following replacements in formulae (1.4): s by a, cos (.) 
by sin (-) and sin . • s a a (.) by --cos(-),At, A2,A1,A2 are coefficients which depend only on s, la is the shear modulus, 
k = 1 - v in the plane state of strain and k = 1/(1 + v) in the plane stressed state (k is related to the 
Muskhelishvili parameter ~ [35] by the formula v = 4 k -  1; for Bogy's parameter m [21] we have m = 4k). 

The asymptotic behaviour of the stresses and displacements at the apex of the wedge is completely defin- 
ed by the poles of A~,A~,A~,A~ as functions of the parameter s. The problem is to determine these poles. 

We first write out relations"expressing the displacements ut and ub on the wedge faces in terms of 
the surface tractions on them. Using (1.3) and (1.4), we obtain a system of equations 

u t = R . p  t + Rtbp b 

u s = R b t P t  + RbbPb 11o00 ,o,2,1f 
P t  = ( Y r 0 ( S , O / 2 )  ' 

u t = ur(s, O i 2  ) ' 

1 R" R . = ~ - ( R  s+ ), 

1 
R~,b = "~ (R" - R a )', 

i1ooo, o,2 11 Pb = Or0(s,_ O/2)  

if u0. o, ,ll Ub = Ur(S, -012)  

1 Ra R,b---~ (R'-  )l 
1 

R~ = - 7  (R' +R"); 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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a S  ~ m  1 1 1 IIka_ - T S + k b +  
(1.9) 

s + 1 T s 2~t II TS + kb_ -ka+ 

II ,110, s + 1 T a 21.t T a + kb+ -ka_ 

T s = ( s + l ) s i n O + s i n ( s +  1)O, T a = ( s + l ) s i n O - s i n ( s + l ) O  (1.11) 

a± = 2 ( c o s O + c o s ( s +  1)O), b± = 2(s inO+s in(s+  1)O) (1.12) 

The subscript 1 means that the fast  column in the matrix has been multiplied by -1; a prime means 
that the first row has been multiplied by -1. 

Formulae (1.5) hold for each wedge. Their use for a multi-wedge requires the use of contact conditions. 
One such condition is the continuity of  forces across contacts. At the ith contact we have 

P~,+' =Pl =Pi (1.13) 

Another condition may be a given discontinuity of  displacements 

a u ' - u g  ÷' ' aug 
- -  - - I I  t (1.14) 

A special ease of  this condition with A.ui0 = 0 is the full bonding condition. To simplify our argument 
we shall assume that the functions Au'0(s) have no poles in any finite region of the plane S. 

Formulae (1.5), the contact conditions (1.13) and (1.14), and the boundary conditions (for open 
systems) .enable us to construct second-order three-point difference equations for the two-dimensional 
vectors p~. The form of the system of equations and the boundary conditions depends on the type of 
problem. The cases of  an open system (Fig. 1) and a dosed  system (Fig. 2) will therefore be treated 
separately. 

2. O P E N  S Y S T E M  

When there are outer  boundaries, we obtain a system of difference equations of the following form 
[32] 

A i p i - I - c i p i + B i p i + l + F i = O  ( i=1  ..... n - l )  (2.1) 

where 

A i = _Rib, C i = RI t _ ..Di+'bb, B' = R~, t, F i = -Au~ (2.2) 

To solve this system, we use the conditions 

- C ° p  ° + B ° p  I + F  ° = 0  

Anp n-I - C ~ p  n + F  ~ = 0  
(2.3) 

These relations exhaust the main types of boundary conditions. Indeed, if the tractions p0, are prescribed 
at the zeroth (i = 0) boundary, we must write 

ii1 oil .o=o Fo=,o C ° = I =  0 1 ' 

For prescribed displacements Au ° = u °, we have 

C O = -R~ , ,  B ° = R~, t, F ° = _u ° 

Similarly, for the last boundary (i = n), with prescribed tractions pn 



A method of finding asymptotic forms at the common apex of elastic wedges 191 

A n =0 ,  C n = I ,  F" = pn 

and for prescribed displacements Au n = - u  n 

A n _ n C n n F n = u n --Rtb, = R n, 

Problem (2.1), (2.3) is solved by matrix pivotal condensation [36]. In the direct pivotal condensation 
one successively finds the matrices et z and the vectors fl' 

a I =(C0)- IB 0, 151 =(C0) - IF  0 

Ot TM = (C i - Aioti) -I B i (i = I ..... n -1)  (2.4) 

13 TM = ( C i - A i a t i ) - I ( F i  +Ai [3  i)  ( i = l  . . . . .  n)  

Then, in the retrograde pivotal condensation, one determines the transforms of the tractions at the 
contacts 

pn = 13.+1, pi = oti+lpi+l + 13i+1 ( i = n - !  . . . . .  1) (2.5) 

Taking the inverse Mellin transforms of the resulting expressions pi, one obtains a solution to the 
initial problem. By the residue theorem, the principal and following terms of its asymptotic expansion 
are determined by the poles of the integrands. These poles are uniquely defined by the determinant D 
of system (2.1), (2.3). In view of its speeitic structure, D may be expressed in terms of the second-order 
sweeping matrices a z (i = 1, . . . ,  n). The formula is 

D ( s )  = det f i  ( A i a  i - C i) = f i  det(Aia i - C i ) 
i=o i=o 

where a0 = 0. 
It can be shown (we shall not go into details) that the roots of the equation 

(2.6) 

D(s)  = 0  (2.7) 

determine the asymptotic behaviour of the stresses (and displacements) not only at the contacts but 
also inside the wedges. The asymptotic relationships are the same in all wedges. 

The roots of Eq. (2.7) are symmetric about the real axis and the straight line Re s = -1. Therefore, 
if s = a + /b (a > -1, b > 0) is a root of the equation, so are the numbers a - ib, --a + ib - 2, 
--a - i b  - 2. They determine the asymptotic forms as r ---> 0 and r ---> -0. 

The asymptotic behaviour of the stresses as r ---> 0 is determined by the roots of (2.7) that lie to the 
left of the line Re s = -1. For r ---> *,,, the significant roots are those to the fight of the line. (We have 
taken into account here that the transforms of the stresses and the forces are determined, according 
to (1.2), with the stresses multiplied by r2.) 

Let us consider the asymptotic forms as r ---> 0. This means considering the roots of (2.7) with 
Re s < -1. For complex roots, we need consider only those for which Im s > 0. Number all such roots 
in order of non-increasing real part. Conjugate roots, for which Im si < 0, guarantee that the inverse 
transform is real for the tractions and all the stress components. As a result, if r < 1 the components 
of the physical stresses (i.e. not multiplied by r 2) are 

O = Re ~ Ckr -'~k-2 (r < i) (2.8) 
k=l 

where Re sk < -1; Im sk > 0, k = 1, 2 . . . . .  The representation (2.8) takes it for granted that all the 
roots are simple; multiple roots lead to terms with a factor In r. 

The displacements admit of similar asymptotic expansions 

u = Re ~ Bkr -sk-I (r < 1) (2.9) 
k=l 

where the roots Sk are the same as in (2.8). 
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In practical work one uses the first or the first few terms of (2.8) and (2.9). The only roots leading 
to singular stresses are those in the strip -2  < Re s < -1. We know [14, 20, 28-30] that such roots do 
not always exist. But in the case when Sl < -2  the use of the first terms of the asymptotic representations 
(2.8) and (2.9) is desirable to ensure accurate and stable numerical results. 

3. C L O S E D  SYSTEMS 

Systems of dosed type (Fig. 2) are quite common for block or granulated structures, and also for 
welded joints. Important numerical results for two and three rigidly coupled wedges may be found 
in [31]. General systems of this type may be considered, subject to only slight modifications in the 
reasoning of Section 2. The use of (1.5), (1.13) and (1.14) produces the following system of difference 
equations 

where 

A ° p  n-I - C ° p  ° + B ° p  I + F ° = 0 ( i  = 0)  (3.1) 

Alp '-~ - C i p  i +Bip TM + F  i = 0  ( i=1 ..... n - l )  (3.2) 

p, = p0 (3.3) 

A ° = A n = - R ~ b ,  C O = C n = R~. - R ~ h ,  B ° = B n = R~t,  F ° = F  n = - A u ~  

For i = 1 . . . . .  n - 1 the coefficients A i, C/, B i and F / are defined by formulae (2.2). Condition (3.3) is 
included so as not to exclude pn from (3.2) at i = n - 1; this enables us to maintain the form of (3.2) 
when i = 1, n - 1. 

To solve Eqs (3.1)-(3.3) we use a version of the matrix pivotal condensation method--cyclic matrix 
pivotal condensation. This method is based on an analogous method for scalar systems [36]. In the direct 
pivotal condensation we have 

ol I = 0 ,  ~ l = 0 ,  3, I = v  ° = I  

OLi+l = (C / _ Aio~i )-I B i ' [~i+l = (C i _ Aioli )-I (F i + AifAi) (3.4) 

,yi+l = ( C  i _Aioli)-IAi,yi ( i - 1  ..... n - l )  

The retrograde pivotal condensation generates the auxiliary quantities 

q n = 0 ,  V n = I (3 .5 )  

qi =o~i+lqi+l .l_ [~i+1, V i = o [ i+ lv i+ l  "k~  TM ( i = n - I  ..... 1) 

where the vectors are a solution of the inhomogeneous equations with homogeneous boundary conditions 

Aiq i - l -C iq i  +Biqi+l +Fi=O (i=l ..... n - l )  

q ° = 0 ,  qn '=0  

and the matrices V / solve the homogeneous problem with inhomogeneous boundary conditions 

A i v  i-1 - c i v i + B i v  TM = 0  ( i=1 ..... n - l )  

V ° = I, V" = I 

(I is the 2 x 2 identify matrix). 
Then the solution of Eqs (3.1)-(3.3) is given by the formulae 

p0 = pn = _ ( A o V . - I  _ C o + B 0 V  I )- l  ( F  0 + A 0 q . - I  + B 0 q l  ) (3 .6 )  

pi = qi + Vip0 ( i=l  ..... n - l )  
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The determinant of  system (3.1)--(3.3) uniquely defines the asymptotic behaviour of  the stresses and 
displacements as r ~ 0 and r ---> **. In the case being treated, as follows from (3.4)-(3.6), the determinant 
has the form 

n-I  
D = det(A°V n-I - C O + B°V I) 1-] det (A iai  - c i )  (3.7) 

i=l 

As in an open system, the determinant is expressed in terms of 2 x 2 determinants. The roots of the 
equation D = 0 determine the exponents Sk in the representations (2.8) and (2.9) for the stresses and 
displacements. 

4. T H E  CASE OF S M O O T H  C O N T A C T S  

When there is no friction at the contacts, one has zero shear stresses and prescribed discontinuities 
of  the normal displacements at each contact. One must then retain in (1.5)--(1.7) only the normal 
components of  the vectors Pt, Pb, Ut, ~ .  We therefore put 

' 
U t = 

Aui  = u~+l i 
- u , ,  = au 0 

All these quantities are scalars. 
Applying (1.5), the contact conditions (1.13) and (1.14) and definitions (1.8)-(1.10) for normal 

components only, we arrive at formulae of  the same form as (2.1) with 

1 k 1 + 
R. = - R ~  = 2 21.t s + l  

(4 .1)  

Rtb= -Rbt = 2 2g s + 1 T "  

and  T s, T a, a +, a_ as defined by (1.11), (1.12). 
The subsequent reasoning is the same as in Sections 2 and 3. We arrive at a system of (scalar) equations 

of  the form (2.1), (2.3). The coefficients are defined by formulae (2.2), but now with R,, Rd,, Ru, Rt, t, 
given by the new formulae (4.1). System (2.1), (2.2) is solved by pivotal condensations using formulae 
(2.4) and (2.5). The roots of its determinant, uniquely define the .asymptotic relations. The only difference 
is that now all the coeffieientsA', C ~, B z, ~ are scalars. T h e A ' o ?  - C '  (i = 0 , . . . ,  n )  in (2.6) is a scalar, 
and the characteristic determinant (2.6) may be written 

tl 
D = I'[ ( AiO~i - c i )  (4.2) 

i=0 

where a ° = O. 
In the case of  a closed system we obtain from (3.7), in exactly the same way 

n- I  
D = ( A ° V  "-1 - C o + B ° V  I ) l'-[ ( AiO~i -- c i )  (4.3) 

i=1 

where now V i (i = 0 . . . .  , n) are also scalars; when computing them one assumes that F ° = V ~ = 1. 

5. A N T I - P L A N E  D E F O R M A T I O N  

The case of  anti-plane deformations is not only interesting in itself (as representing a special kind 
of  deformation). Its asymptotic forms remain valid in a more general situation: they are partial asymptotic 
forms for three-dimensional blocks around common points on smooth parts of  their interacting edges. 
In addition, the consideration of  anti-plane deformations provides a sample treatment of a typical 
harmonic problem. 
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In anti-plane deformation the displacement uz is a harmonic function. Taking the Mellin transform 
(1.1) of the displacement of  Laplace's equation, we obtain the general solution of the transformed 
equation 

u z (s, O) = A I cos sO + A 2 sin sO 

Then the transforms of the stresses, multiplied by • (and not by r 2 as previously), are 

~ ( s , O )  = ~ r~oz(r,O)rS-ldr = - g s ( A  I sin sO - A 2 cossO) 
0 

~,z (s, O) = ~ rGrz (r, O)rS-l dr = -las(A l cos sO + A 2 sin sO) 
0 

In the ease at hand, formulae (1.5) are scalar, with 

P, = 6 o z ( s , O / 2 ) ,  Pb = 6 0 z ( s , - O / 2 )  

u, =Uz(S ,O/2) ,  u b = U z ( S , - O / 2  ) 

1 
R .  = - Rbb = - - -  ctg sO,  R,b = - Rb, = 

l 1 

sin sO 
(5.1) 

The rest of the argument remains unchanged. For an open system, applying (1.5), (1.13) and (1.14), 
we obtain difference equations (2.1) and (2.3), which are now scalar equations. Their  coefficients are 
given by formulae (2.2), and Rtt, Rtb, Rbt, Rbb by the new formulae (2.2). 

All the subsequent reasoning is the same as in Sections 2 and 3. The only difference is that the formulae 
for the pivotal condensation coefficients and the determinant D contain only scalar quantities. For 
D we obtain a formula of  type (4.2) for open systems and (4.3) for closed systems. Once again, the 
equations D = O uniquely defines the asymptotic forms. Now, however, the roots are symmetrical about 
the Re s = 0 axis. Then, if the roots are simple, we replace (2.8) and (2.9) by 

o = R e ~ , c k r  -sk-', ua=Re~L B k r  -sk ( r < l )  
k=l k=l 

where Re Sk < 0, Im Sk >I O~ This slight difference is due to the fact that in this case the stresses are 
multiplied by • (instead of r ~ in (1.2)) and the displacements Uz are not multiplied by • (unlike (1.2)). 

The expressions for the characteristic determinants are readily obtained in an alternative form. For 
this purpose one can use, instead of formulae (1.5), which are solved for the displacements, formulae 
that are solved for the tractions. The final formulae are equivalent to those presented above, but more 
complicated. 

The main application of this method may be to develop a universal program module to construct 
trial functions for special "singular" elements in boundary element and finite element methods. Only 
with the help of such elements can one substantially improve the accuracy and reliability of computations 
for block (granulated) media. 
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